Roll-to-Roll Manufacturing of Nanostructured Materials and Devices

Jim Watkins

Polymer Science and Engineering Department and Center for Hierarchical Manufacturing – NSF NSEC University of Massachusetts, Amherst

Low Cost Nanodevices by Combining Printed Electronics and Nanostructured Device Layers

- Start with Printed Macroelectronic Substrate
 - low cost, low performance
 - simple devices
 - micron ++ length scales

printedelectronicsnews.com

Add Nanostructured Device Layers via Low Cost Processing

- low cost, large area

-enabled or enhanced functionality due to nanostructure

- length scales less than 50 nm
- may sit on top of printed macroelectronic substrate
- PVs, energy storage, magnetic metamaterials, sensors

• Produce Low Cost, High Performance Nanotech-enabled Devices

Nanofabrication Technologies for Roll-to-Roll Processing An Academic-Industry Workshop on Technologies for American Manufacturing Competitiveness Seaport Convention Center, Boston, MA

Tuesday September 27, 2011

- Atrium-Seaport Convention
- 5:00-6:15 pm Reception/Poster Session for Nanomanufacturing Summit 2011

6:30pm Workshop Dinner-Constitution Room, Seaport Hotel

- 6:40 pm Introductory Remarks and Workshop Objectives J. Morse-NNN
- 6:45 pm Flexible Substrate Nanoanufacturing Roadmap Dan Gamota, INEMI
- 7:30 pm Nanofabrication for Roll to Roll Processing James Watkins, CHM/UMass
- 8:00 pm High Temperature Roll to Roll Processes Amit Goyal, Oak Ridge National Lab

Wednesday September 28, 2011

Skyline Room, Seaport Convention Center

- 7:30-8:30 am Breakfast
- 8:30 Ken Carter-CHM/UMass Amherst
- 8:55 Nikolaos Kehagias, Catalan Institute of Nanotechnology
- 9:20 Jay Guo-University of Michigan
- 9:45 Jennifer Ernst ThinFilm, Inc.
- 10:10 Robert Praino-Chasm Technologies
- 1030 Break
- 10:50 Rick Daniels-Carestream Nanometer Functionality Delivered by the Meter
- 11:15 Dennis Slafer-Microcontinuum
- 11:40 William Jarvis-Flexcon
- 12:05 Michael Hunter-Liquidia Technologies
- 12:30 Lunch and Group Discussions
- 1:00 Dan Gamota, INEMI, Standards Initiatives
- 1:15 Ganesh Sundaram, Cambridge Nanotech, inc.
- 1:40 Hong-Yee Low-AStar/IMRE
- 2:05 Mark Poliks-CAMM
- 2:30 S.V. Sreenivasan-University of Texas Austin/Molecular Imprints
- 2:55 Trevor Niblock-Magzor, Inc.
- 3:20 Break
- 3:40 Joe Petrzelka, MIT
- Scaleup of Soft Lithography to R2R Technology: Modeling and Control of the Contact Region 4:05
- 4:30 Discussions and Readout of Key Challenges, Issues
- 5:00 Adjourn

- Tues. Evening through Wed.
- International Workshop
- 20 + Talks
- See Jeff Morse if Interested

Challenges for R2R Manufacturing of Nanostructured Materials and Devices

- Materials and Process Costs
- Planarization and Base / Barrier Layers
 - includes transparent conducting films, coat-able dielectrics
- Creation of Ordered Nanoscale Hybrid Materials as Active Layers
 directed and/or additive driven self-assembly
- Continuous Device Level Patterning
 - roll-to-roll nanoimprint lithography
- Availability of Collaborative Demonstration Facilities / POC Projects
 - UMass CHM R2R Tool Platforms
 - PVs, Flexible Memory as Example Devices

Challenges for R2R Manufacturing of Nanostructured Materials and Devices

- Materials and Process Costs
- Planarization and Base / Barrier Layers
 - includes transparent conducting films, coat-able dielectrics
- Creation of Ordered Nanoscale Hybrid Materials as Active Layers
 directed and/or additive driven self-assembly
- Continuous Device Level Patterning
 - roll-to-roll nanoimprint lithography

Availability of Collaborative Demonstration Facilities / POC Projects

- UMass CHM R2R Tool Platforms
- PVs, Flexible Memory as Example Devices

Nanotechnology Is Enabling but Many Important Applications are Cost Sensitive Energy, Water, and Flexible Electronics Nanomanufacturing Must Adapt to Serve Low Cost Per Area Devices

- Morphology is key to performance
- BCP template yields periodic structures (5 45 nm domains)
- Hybrid materials for functionality
 - co-assembly required
- Roll-to-Roll manufacturing
- Integration with top down processes

Controlling Morphology at the Nanoscale Can Be Critical to Device Performance

Heterojunctions in PVs – Length Scale and Morphology

er for Hierarchical Manufacturing ersity of Massachusetts Amherst

10 nm domain size straight channels

Controlling Morphology at the Nanoscale Can Be Critical to Device Performance

Block Copolymer Templates: Spontaneous Assembly upon Spin Coating, Complete Control of Morphology

Key Parameters: block volume fraction, $f \rightarrow$ controls morphology Flory Parameter, $\chi \rightarrow \chi N$ controls segregation degree of polymerization, N \rightarrow controls domain size

Massachusetts Amherst

Small N requires large χ for strong segregation

Extension of Self-Assembly for High Volume Fabrication of Nanostructured Materials and Devices

Key Issues and Strategies:

- Commodity scale availability for low cost/high volume systems
- Creation of technologically useful materials: functionalize to realize electronic, mechanical, optical properties
- Create well-ordered nanoparticle/BCP systems with prescriptive placement of NPs and high NP loadings
- Develop robust R2R manufacturing platform
 - scalability, process models, manufacturability, metrology, QA, process control

Commodity Block Copolymers: Pluronic™ Surfactants

•Inexpensive and readily available with various f_{PEO} and N

• Low $\chi_{\text{PEO-PPO}}$: $\chi(T) = -0.122+66.8/T^1$ $\chi_{\text{PEO-PPO}}$ @ 80 °C = 0.066-0.068

Segregation strength of Pluronics²

Polymer	Total M _w	f _{PEO}	χ <i>N</i> * (calc.) Min. ODT (K	
F127	12,000	0.7	16.95	256
F108	15,000	0.8	20.29	337.5

At very low Mw, $\chi \textit{N}$ is typically too low for phase separation

No Microphase Separation at 80°C

1 Ryan, Booth, and coworkers, Phys. Chem. Chem. Phys. 2000, 2, 1503-7

Center for Hierarchical Manufacture Tirumala, V.R.; et al. Advanced Materials, **2008**, 20, 1603-1608

Pluronics Grid

Molecular ¥eight of Hydrophobe (950 to 4000 polyoxypropylene)

Hydrophile (10 to 80% polyoxyethylene)

http://www.basf.com/performancechemical/ bcperfpluronic_grid.html

Strengthening Phase Segregation via Segment Specific Interactions:

We find blending with homopolymers that H+ bond to the majority PEO block yields exceptionally well-ordered materials by increasing segregation

- Demonstrates the role of strong selective interactions in polymer assembly
- Induce order in compositionally heterogeneous systems with small $\,\chi$
- Will enable use of BCP templating in low cost applications (roll to roll, extrusion)
- Increases in χN will reduce feature size

iversity of Massachusetts Amherst

Strengthening Phase Segregation via Segment Specific Interactions: Stable Functional Templates

Broad Class of Behavior

BCPs as Templates for Well-ordered Nanocomposites ligands can be used to control particle location

= homopolymer of one block

NP distribution in target domain influenced by NP size, chain stretching

Issue for High Particle Loadings:

- Entropic penalties arise from chain stretching to accommodate NPs
- Entropic penalties push systems towards disorder in systems with neutral (or weak) enthalpic interactions

Thompson et al., Science 2001 Balazs, Emrick, Russell Science 2006 Lo et al., Macromolecules 2007

Addition of NPs with Enthalpically Favorable Interactions Induces BCP Order

Using hydrogen bonding, ligands can be used to drive NP sequestration & segregation at high loadings

C = H-bonding acceptor

R= H-bonding donor, use "short" ligand

entropic penalty is offset by an enthalpic gain.

Disorder to Order Transition Induced by Si Nanoparticles

Phase Behavior of F108 with Si Quantum Dots (2-4 nm) Functionalized with Ally Amine

Functionalized Gold NPs in F108: SAXS

Similar results for high and low molar mass BCP systems, e.g. PS-b-PEO

Assembly Using Fullerene Derivatives

l (a.u.)

enter for Hierarchical Manufacturing niversity of Massachusetts Amherst H-bonding exists between PEO and C60-COOH Higher functionality, more favorable interaction, more order

The importance of morphology control in BHJ PV cells

P3HT+ PCBM

P3HT/PCBM 150C annealing for 1h

Bertho, S. Sol. Energy Mater. Sol. Cells 2008, 92, 753.

Advantages:

- (1) Large interfacial area
- (2) Effective charge generation
- (3) Extremely fast electron transfer

Drawbacks:

- (1) Poorly controlled D/A domain size distribution (strongly dependent on processing conditions)
- (2) Morphological instability & aging (aggregation of fullerene nanocrystal)

An Example of a Device Based on Additive Driven Assembly: Block Copolythiophenes/Fullerene Blends for Photovoltaics

GISAXS – Ordered Structure

PCE VS. Processing Conditions

	V _{oc} (V)	FF(%)	J _{SC} (mA/cm²)	PCE (%)
as spun	0.57	53.58	6.23	1.90
pre-annealing 150C 10min	0.60	54.27	6.29	2.04
post-annealing 150C 10min	0.59	52.46	6.37	1.97

AFM phase images

BCP: P3HT-b-P3TEOTBCP/bis-PCBA=8/2BCP/bis-PCBA=6/4150°C 30min

- Incompatibility of hydrophobic and hydrophilic side chains induce microphase separation
- Microphase separation is maintained at high loadings of C60

Suppression of C60 Crystallization over Extended Annealing

Comparison of P3HT Based Devices: Accelerated Aging

Floating Gate Memory via Self Assembly

SAXS and **TEM**

 \checkmark Better order occurs with the addition of Au-OH NP.

✓ Lamellar morphology remained even at 30% loading.

80/20

Transfer Characteristics of the Device with/without Au NPs

Transfer Characteristics of the Device with/without Au NPs

Transfer characteristics of the Device with/without Au NPs

Transfer characteristics of the Device with/without Au NPs

Program – Erase Cycles

The programming and the erasing are reversible

R2R Processing of Single Domain Block Copolymer Thin Film

MiniLabo Microgravure Coater

PS-*b*-P2VP (55k-b-25k) on Teonex PEN 125 um Planerized Film : Phase Image

Roll-to-Roll Coating of Ordered Hybrids

- Two interchangeable gravure or Mayer rod coaters placed in series
- First coater used to apply a planarization layer
- Second coater used to apply thin block copolymer or hybrid layer on planarized film.
- Three independently controlled ovens (with room for expansion to six) used to apply temperature and environmental gradient along web.

Device-Level Patterning by R2R

L. Jay Guo, Michigan UV R2RNIL

Guo, Adv Mat. 2008

HP SAIL TFT Backplane

Taussig, HP Labs

Imprint Lithography

Imprint lithography is generally practiced in one of two modes

- Thermal Imprint Lithography
 - Emboss pattern into thermoplastic or thermoset with heating
- UV-Assisted Imprint Lithography
 - Curing polymer while in contact with hard, transparent mold
 - Low thermal budget, less mold adhesion problems, high speed

Patterning of Flexible Floating Gate Memory – No Alignment Required

Patterning limits will determine device density

UMass / CHM R2R NIL Tool

- K.R. Carter and J. Rothstein are CHM Test Bed Coordinators
- UMass NANOemBOSS R2RNIL Tool has been designed and constructed with Carpe Diem Technologies (Franklin, MA)
- Tool is uniquely designed for coating and imprinting with nanoscopic precision

Roll-to-Roll Process Facility

• UMass NanoEmboss R2RNIL tool is installed at UMass.

First Run – May 25, 2011

• We successfully imprinted 2 micron features from a PDMS mold to a web moving at 12inch/min.

Hao Zhang, Jacob John

R2R NIL Results

Hao Zhang, Jacob John

Challenges for R2R Manufacturing of Nanostructured Materials and Devices

- Materials and Process Costs
- Planarization and Base / Barrier Layers
 - includes transparent conducting films, coat-able dielectrics
- Creation of Ordered Nanoscale Hybrid Materials as Active Layers
 directed and/or additive driven self-assembly
- Continuous Device Level Patterning
 - roll-to-roll nanoimprint lithography
- Availability of Collaborative Demonstration Facilities / POC Projects
 - UMass CHM R2R Tool Platforms
 - PVs, Flexible Memory as Example Devices

some more difficult than others, but no obvious show stoppers

