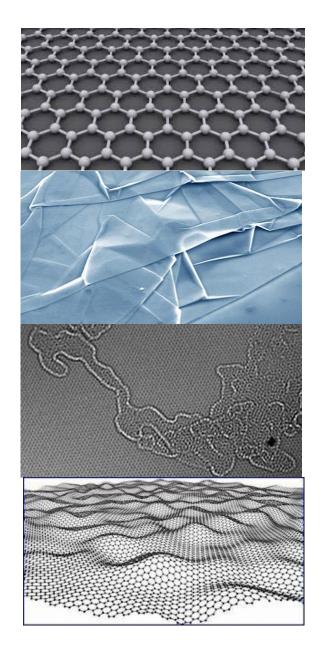


# **Metrology Solutions for 2-D Nanomaterials**


**Dr Toby Sainsbury Materials Division** 

17 October 2013



### **OUTLINE**

- NANOTECHNOLOGY
- 2D NANOMATERIALS
  - GRAPHENE
  - HEXAGONAL BORON NITRIDE
  - ALTERNATIVE 2D NANOSHEETS
- POTENTIAL CHALLENGES
- CHEMICAL FUNCTIONALIZED GRAPHENE
- GRAPHENE PROGRAM AT NPL
- SUMMARY





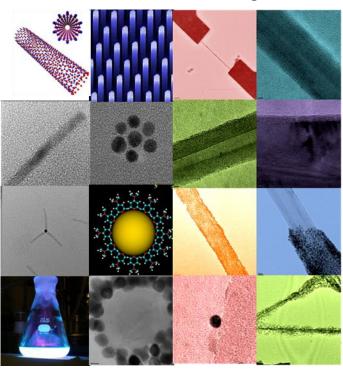
## **Nanotechnology**

- Nanotechnology: Technology involving benefits or attributes specifically assigned to the use or inclusion of materials which have one or more of their dimensions less than 100 nm.
  - Synthesis of nanomaterials
  - Application by assembly, processing, and integration of materials and structures
  - Result: Stronger, more conductive, lighter, brighter, thermally conductive, smaller, faster, cheaper

 Bottom line. Financial, environmental, medical, societal, and scientific benefits resulting from nanotechnology

NANOMATERIALS

#### **1D NANOMATERIALS**


- NANOTUBES:
- NANOWIRES:

- High aspect ratio
- · Highly conductive
- Highly insulating
- Semi-conductive
- Super conductive
- UV-lasing
- Thermally conductive
- High strength

#### **3D NANOMATERIALS**

- NANOPARTICLES
- NANORODS
- QUANTUM DOTS
- DNA ASSEMBLIES
- TETRAPODS
- PEPTIDE FIBRES
- MX2 ONIONS
- $C_{60}$

- Size tuneable plasmonic λ
- Conductive
- Semi-conductive
- Insulating
- Fluorescent
- Catalytic
- Biocompatible
- Anti-oxidative



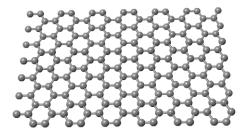
#### **2D NANOMATERIALS**

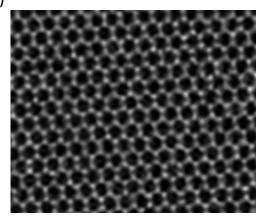
GRAPHENE......



# **Graphene**

#### PROPERTIES

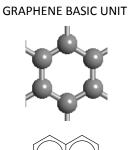

- Conductive (mobility:200,000 cm<sup>2</sup>v<sup>-1</sup>s<sup>-1</sup>)
- Young's modulus: ~1 TPa
- Low density (2.3 gcm<sup>-3</sup>)
- Thermal conductivity (~5000 Wm<sup>-1</sup>K<sup>-1</sup>)
- Optical transmittance : 97.7%
- Chemical substrate

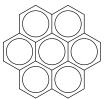

#### Chemically stability (<400 °C) Surface area: 2630 m<sup>2</sup>g<sup>-1</sup>

Non-polar bonds ( $\chi$ = 0)

Planar structure (sp<sup>2</sup>)

Crystalline




#### ENVISAGED APPLICATIONS

- Thermal management
- Composite materials
- Batteries/supercapacitors
- Filtration/absorbents
- Optoelectronics
- Lightning strike

Metrology standards ( $\Omega$ ) Electronic (sub/super) Sensing and Diagnostics Conductive Inks microwave coatings Catalysis





CHEMICAL REPRESENTATION



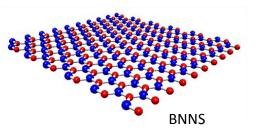
NANORIBBON

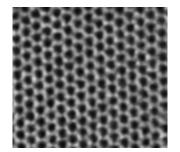
(GNR)

## **Hexagonal-Boron Nitride (h-BN)**

#### PROPERTIES

- Insulator (Eg ~5.5 eV)
- Mechanically robust (E<sup>2d</sup> = 270 Nm<sup>-1</sup>)
- Low density (2.3 gcm<sup>-3</sup>)
- Thermal conductivity (0.3 W.cm<sup>-2</sup>.°C<sup>-1</sup>)
- Macroscopic colour

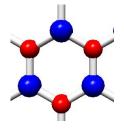

Chemically stability (0-850 °C)


Large surface area

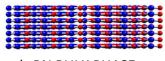
Heteropolar bonds ( $\chi$ = 1)

Planar structure (sp<sup>2</sup>)

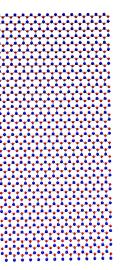
Crystalline







#### ENVISAGED APPLICATIONS

- Thermal management
- Composite materials
- Storage/ Fuel Cell
- Optoelectronics


Radiation Shielding Electronic (sub/super) Sensing and Diagnostics Catalysis







h-BN BULK PHASE



BN NANORIBBON (BNNR)

#### CHALLENGES TO UTILIZATION:

exfoliation, compatibilization, large-area synthesis

### **2-D NANOMATERIALS**: ALTERNATIVE 2D NANOSHEETS

#### **RANGE OF MATERIAL PROPERTIES**

Electrical band gap 0-6 eV

Optical absorption

Thermoelectric (Bi<sub>2</sub>Te<sub>3</sub>)

Topological insulator (Bi<sub>2</sub>Te<sub>3</sub>)

Range of mechanical properties (MoS<sub>2</sub> E<sup>y</sup>-270

GPa)

Range of thermal properties

#### **APPLICATION OF 2-D NANOMATERIALS**

Catalysis

Lubricant additives

**Nanoelectronics** 

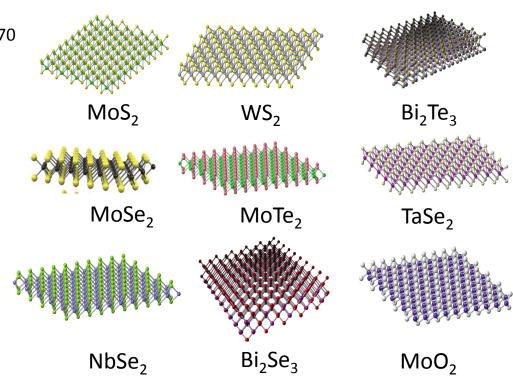
Sensors

**Nanocomposites** 

**Batteries** 

Supercapacitors,

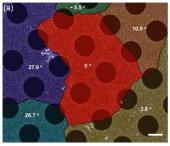
Hydrogen storage

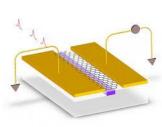

**Environmental science** 

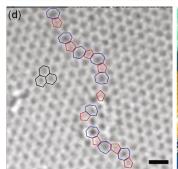
Metrology standards

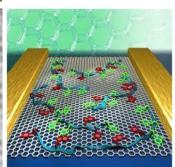
Thermal management

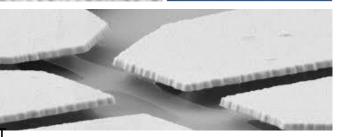
Barriers/membranes


**Dielectrics** 





#### **CHALLENGES FOR COMMERCIAL VENTURES**


- WIDE-AREA HIGH QUALITY SYNTHESIS
- EFFICIENT EXFOLIATED MATERIAL
- GRAIN BOUNDARIES/DEFECTS
- AGGREGATION
- CHEMICAL INTEGRATION
- ELECTRONIC INTEGRATION
- BAND GAP
- SENSITIVITY TO SUBSTRATES, DOPANTS AND ENVIRONMENT
- SCALE UP OF GRAPHENE-ANALOGUE CHEMICAL PLATFORMS











http://graphene.icfo.eu/ Appl. Phys. Lett. **97**, 083107 (2010); ACS Nano **5** (3), 2142-46 (2011)



**ATTRACTIVE INTRINSIC PROPERTIES** THEORETICAL AND **DEMONSTRATED** NANOSCALE/QUANTUM **PHENOMENA** 



COMMERCIAL APPLICATION **ACTUAL REAL-WORLD MACROSCOPIC PRODUCTS BENEFITS FINANCIAL** SOCIETAL **SCIENTIFIC** 

Is it graphene?

Is it safe?

Will it stay graphene?

Is it dispersed?

Is it chemically pure?

What size is it?

How conductive?

How robust is it?

Concentration?

Contact resistance?

Mobility? Sheet resistance?

Is it monolayer?

XPS?

HRTEM?

SEM?

Raman spectrum?

Chemistry?

**EM Diffraction?** 

Sheet stats?

Cost to synthesize?

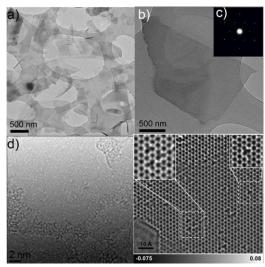
Supply chain?

Processing costs?

Who are the suppliers?

Can it be scaled?

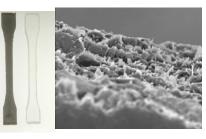
FDA approval?


Who knows the answers?



#### **NEED**

- STANDARDS AND DEFINITIONS
- CHEMICAL INTEGRATION STRATEGIES
- ELECTRONIC INTEGRATION STRATEGIES
- METROLOGY FOR 2-D NANOSHEETS
  - CHEMICAL FUNCTIONALIZATION
  - DISPERSION AND INTEGRATION
  - COMPOSITE CHARACTERIZATION
    - MATRIX INTERFACE
    - MECHANICAL
    - ELECTRONIC
    - THERMAL
    - CHEMICAL


#### **FUNDAMENTAL CHARACTERIZATION**

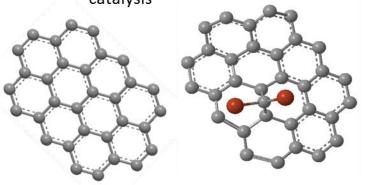


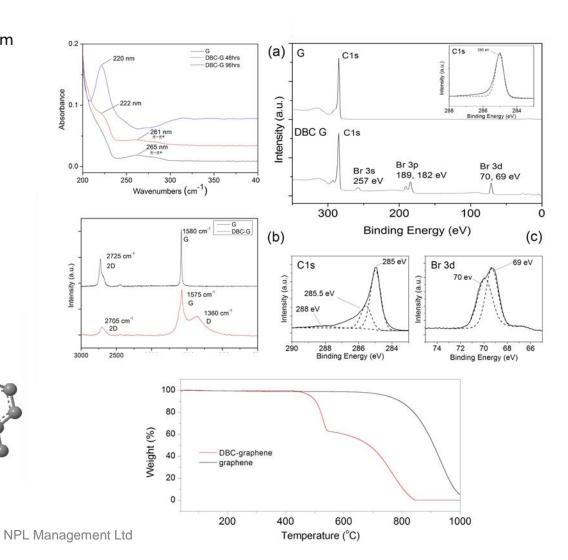
#### PROCESSING AND INTEGRATION



#### **APPLICATION ANALYSIS**







### **2D NANOMATERIALS**

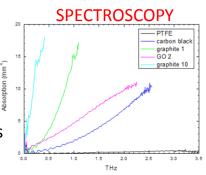


#### **CHEMICALLY FUNCTIONALIZED GRAPHENE**

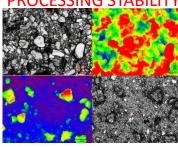
- Distortion of delocalized electron system
- Chemical doping
- Chemical functionality
- Band gap manipulation
- Application:
  - Sensing
  - Electronics
  - Composites catalysis



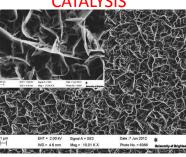




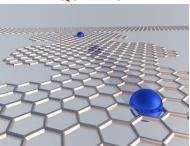

#### **MEASUEREMENT AT NPL:**

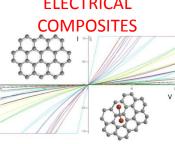

- Graphene
- Graphene oxide
- Graphene: chemical derivatives
- Graphene aerogel
- Graphene polymer nanocomposites
- Graphene inks
- Graphene -metal composites
- Graphene catalytic platforms
- Graphene sensor platforms

#### **TECHNIQUES**

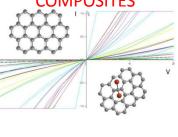

- **FTIR**
- **DMA**
- **UV-Vis**
- DSC
- **AFM**
- Gas analysis
- **TEM**
- **XPS**
- **SEM**
- Ellipsometry
- ToF SIMS \*
- Nanoindentation
- **XRD**
- Electrical
- **XPS**
- **SKPM**
- **TGA**
- Raman/TERS
- Mechanical
- Terahertz spectroscopy



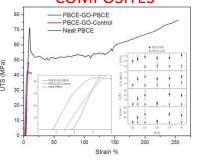

# PROCESSING STABILITY



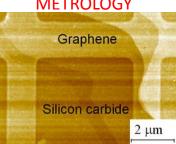

**CATALYSIS** 



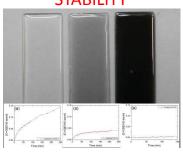

**QUANTUM** 



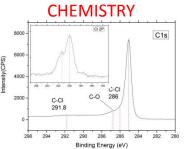




**ELECTRICAL** 




**MECHANICAL COMPOSITES** 




**QUANTUM METROLOGY** 



**CHEMICAL STABILITY** 



**SURFACE** 





### **SUMMARY**

- GRAPHENE
- CHALLENGES TO SUCCESSFUL UTILIZATION
- OPPORTUNITIES FOR METROLOGY ENABLED SOLUTIONS
- NPL FRAMEWORK AND COLLABORATIVE ASSOCIATIONS

#### **NPL GRAPHENE PROGRAM**

Quantum

Dr J.T. Janssen

Jt.janssen@npl.co.uk

Analytical Sciences
Dr Andrew Pollard
andrew.pollard@npl.co.uk

Materials Sciences
Dr Toby Sainsbury
toby.sainsbury@npl.co.uk